2024 API PIPELINE CONFERENCE AND EXPO PIPELINE, CONTROL ROOM AND CYBERNETICS

May 6-8, 2024 Hyatt Regency Salt Lake | Salt Lake City, UT

Skylark CO₂ Dispersion Project

Simon Gant (Health and Safety Executive, UK)

Skylark CO₂ Dispersion Project

- Simon Gant, Zoe Chaplin and Rory Hetherington (Health and Safety Executive, UK)
- Daniel Allason, Karen Warhurst, Ann Halford, Mike Harper, Jan Stene and Gabriele Ferrara (DNV, UK)
- Tom Spicer (University of Arkansas, USA)
- Ed Sullivan (National Chemical Emergency Centre, UK)
- Justin Langridge and Matthew Hort (Met Office, UK)
- Steven Hanna (Hanna Consultants, USA)
- Joe Chang (RAND Corporation, USA)
- Gemma Tickle (GT Science and Software, UK)

Background: Satartia CO₂ pipeline incident, 2020

- Failure of Denbury 24-inch CO₂ pipeline near Satartia, Mississippi due to landslide
- Dense CO₂ cloud rolled downhill and engulfed Satartia village, a mile away
- Approximately 200 people evacuated and 45 required hospital treatment
- Communication issues: local emergency responders were not informed by pipeline operator of the rupture and release of $\rm CO_2$
- Denbury's risk assessment did not identify that a release could affect the nearby village of Satartia

Terrain map taken from Google Maps and contour map taken from topographic-map.com. Approximate location of release marked by a star.

Image sources: Yazoo County Emergency Management Agency/Rory Doyle for HuffPost and PHMSA

- https://www.huffingtonpost.co.uk/entry/gassing-satartia-mississippi-co2-pipeline_n_60ddea9fe4b0ddef8b0ddc8f
- https://www.phmsa.dot.gov/sites/phmsa.dot.gov/files/2022-05/Failure%20Investigation%20Report%20-%20Denbury%20Gulf%20Coast%20Pipeline.pdf

Knowledge gaps in CO₂ pipeline risk assessment

Bent-over plume, no CO₂ re-entrainment

1. Questions:

• Which set of conditions give rise to these two different source conditions (wind speed, release size etc.)?

Light wind

- What are the characteristics of the dispersion source term (composition, flow rate, temperature etc.)?
- Experimental data is limited to just two COSHER tests (COOLTRANS data is currently unavailable)

Plume fountain falls back on itself, CO₂

re-entrained, dense blanket formed

Knowledge gaps in CO₂ pipeline risk assessment

Larger downslope dispersion distances?

2. Questions:

• How confident are we in dispersion model predictions for dense-gas dispersion in complex/sloping terrain?

Channelling effects in complex terrain,

vapour hold-up in valleys

- Have the dispersion models been validated against reliable experimental data?
- Do any dispersion models exist that produce results quickly, i.e., within a few seconds (or minute at most) for use in risk assessment and emergency planning/response?

Knowledge gaps in CO₂ pipeline risk assessment

- 3. Are emergency responders sufficiently prepared to deal with possible incidents involving large CO₂ releases from CCS infrastructure?
 - Learning points from Satartia incident, e.g., vehicle engines stalling in CO₂-rich atmosphere: difficulties evacuating casualties (could electric vehicles be used?)
 - Similar approach could be adopted to the Jack Rabbit II chlorine dispersion experiments Work led by Andy Byrnes at Utah Valley University <u>https://www.uvu.edu/es/jack-rabbit/</u>

© Images copyright DHS S&T CSAC and UVU

Related CO₂ knowledge gaps

- 4. Limited experimental data available for CO₂ venting and blowdown to validate dispersion models used for site risk assessments and permitting studies
 - Dense-phase CO₂ venting at pipeline pig traps
 - Gas-phase CO₂ venting at capture plants
 - Process upset leading to high oxygen levels in CO₂ stream
 - Loss of dehydration leading to high water levels in CO₂ stream
- 5. Uncertainties in venting strategies and consequences of major loss of containment of CO₂ on offshore platforms (including evacuation scenarios)
- 6. Useful to have further data on performance of CO₂ valves
 - Pressure safety valves on refrigerated liquid CO₂ storage vessels (e.g., 18 bar, -30 °C)
 - Pressure safety valves on high-pressure compression (dense-phase CO₂)
 - Pipeline emergency shutdown valves (dense-phase CO₂)
 - Valves to isolate flow of off-spec CO₂ from capture plants (e.g., 20-30 bar, ambient temp)

Proposed Skylark Joint Industry Project

- Work Package 0: Project Management DNV
- Work Package 1: CO₂ pipeline craters and source terms DNV
- Work Package 2: Wind-tunnel experiments University of Arkansas
- Work Package 3: Simple terrain dispersion experiments DNV
- Work Package 4: Complex terrain dispersion experiments DNV
- Work Package 5: Model validation HSE
- Work Package 6: Emergency response NCEC
- Work Package 7: Venting DNV

with support from the **Met Office** in the DNV field trials

Work Package 1: CO₂ pipeline craters and source terms

- Aim: to improve our understanding of source characteristics for CO₂ pipeline releases from craters, using field-scale experiments
- Review existing data for CO₂ pipeline craters, both punctures and ruptures (some data is not yet publicly available)
- Conduct pipeline rupture tests
 - Both gas-phase and dense-phase CO₂
 - 6-inch or 8-inch diameter buried pipelines
 - At least two soil types (e.g., clay/sandy)
 - Assess size/shape of craters produced in soil
 - Construct realistic-shaped metal crater
 - Perform further tests using metal crater with near-field instrumentation
 - Repeat tests: puncture tests, light and moderate wind speeds

Work Package 2: Wind tunnel studies

- Aim 1: to conduct wind-tunnel experiments on crater source behaviour across a wide range of carefully-controlled conditions, with detailed measurements
- Variables: source area, initial jet velocity and density, wind speed
- Answer question: what are the criteria that control when the plume falls back onto the crater, producing re-entrainment and a source blanket?

- Aim 2: to conduct wind-tunnel experiments on dense-gas dispersion in sloping terrain, comparing flat terrain to cases with uniform slopes in different directions with range of wind speeds
- Aim 3: to conduct wind-tunnel experiments to support complex terrain field trials

Work Package 2: Wind tunnel studies

- Chemical Hazards Research Center (CHRC), University of Arkansas
- Large ultra-low speed wind tunnel (larger than EPA, Hamburg and Surrey tunnels)
- 24 m long working section with a 6 m × 2.1 m cross section
- Capable of wind speeds as low as 0.3 m/s and still air experiments
- State of the art instruments for velocity and turbulence (LDV and PIV) and gas concentration (FID, PLIF, PID)
- Data from CHRC wind tunnel has previously used for:
 - PHMSA/NFPA model evaluation protocol for LNG siting applications
 - DNV Phast model development
 - Jack Rabbit II chlorine trials assessment

Work Package 3: Simple sloping terrain dispersion exps

- Aim: to conduct dense-gas dispersion experiments on "simple" uniform sloping terrain to provide data to validate dispersion models
- Idealised gaseous CO₂ source configuration to produce radially-spreading cloud, using a circular outlet similar to the Thorney Island dispersion trials
- Avoid modelling uncertainties associated with two-phase CO₂ release from crater
- Main focus of experiments is to understand effect of slope on dense gas behaviour

rig. 22.2 Outlet from the gas supply duct at the release point

McQuaid & Roebuck (1985) Thorney Island https://admlc.com/thorney-island/ CFD modelling https://doi.org/10.1504/IJEP.2018.093026

Shallow slope

Steep slope

How does dispersion behaviour compare to flat terrain?

Work Package 4: Complex terrain dispersion exps

- Aim: to conduct series of CO₂ release experiments with complex terrain including valleys, hills, obstacles, changing roughness, buildings etc.
- DNV Spadeadam ideally suited to these tests, with multiple possible release locations and large exclusion distances
- Proposed to use mobile rig with 20 40 tonne CO₂ capacity with option to use preformed craters
- More challenging configurations for dispersion modelling
- Aim to answer practical questions:
 - How long does CO₂ persist in depressions?
 - What is the effect of obstacles (trees, hedgerows, buildings)?

Work Package 5: Model validation

- Aim: to test and validate dispersion models that can be used for CO₂ pipeline risk assessment and emergency planning/response
- Many international modelling teams and software developers are keen to test and validate their models against Skylark data (DNV, Gexcon, Kent, CERC, Met Office etc.)
- Opportunity to involve research groups who are developing rapid dispersion models (e.g., Texas A&M, Leeds University) to inform future commercial software development
- Aim to have an open and collaborative approach, like in Jack Rabbit projects
- Welcome input from government labs, industry, academia and consultants
- Aim to test spectrum of models, e.g., correlations, integral, Gaussian puff, shallow layer, machine learning, CFD
- Modellers given access to data in return for sharing results and collaborating
- Requests to join project approved by project steering committee
- Modelling exercises coordinated by HSE

Work Package 6: Emergency response

- Aim: to engage with emergency responders and make best use of the CO₂ dispersion trials: help to prepare responders to deal with possible CO₂ release incidents
- Identify knowledge gaps in emergency response, working with Hazmat teams, Fire and Rescue Services and other emergency responders
- Test gas sensors, breathing apparatus, PPE etc. used by responders in the trials?
- Test vehicles can be used to evacuate casualties? (learning from Satartia incident)
- Opportunity for emergency responders to witness trials and review video footage as learning and training exercise
- Work package led by UK National Chemical Emergency Centre (NCEC)

2024 API PIPELINE CONFERENCE AND EXPO – PIPELINE, CONTROL ROOM AND CYBERNETICS

© Images copyright DHS S&T CSAC and UVU

Work Package 7: Venting

- Aim: to assess if CO₂ vents could give rise to harmful concentrations downwind, near ground level
- Input from sponsors sought on defining range of conditions to be tested experimentally: vent diameter, temperature, pressure
- Planned to test: Two vent diameters (up to 2" NB diameter pipes)
 - Dense, supercritical and gaseous CO₂
 - Repeated tests on three days (low, moderate and high winds)
- Measure outflow rate, vent conditions (pressure / temperature), CO₂ concentration near ground level, plume temperature, videos (normal, thermal, high-speed)
- Conducted alongside other work packages whilst rigs are available
- Interest in testing certain valve designs, following reports of some blowdown valves blocking in the open position due to solid CO₂?

© National Grid / DNV

Work Package 0: Project Management

• Project delivery team

- DNV (experiments): Dan Allason, Rob Crewe, Keith Armstrong
- DNV (modelling): Ann Halford, Karen Warhurst, Mike Harper, Jan Stene and Gabriele Ferrara
- HSE: Simon Gant, Zoe Chaplin and Rory Hetherington
- University of Arkansas: Tom Spicer
- NCEC: Ed Sullivan
- Met Office: Matt Hort and Justin Langridge
- External advisers: Steven Hanna (USA), Joe Chang (Rand Corporation), Gemma Tickle (UK)
- Technical steering group
 - Representative from each of the project sponsors (or their appointed technical consultant)
- Modellers working group
 - Representative from each of the modelling teams contributing and analysing results
- Emergency response working group

Timeline (approximate)

	Project start: summer 2024			
		2024-2025	2025-2026	2026-2027
WP1	Crater releases			
WP2	Wind tunnel			
WP3	Simple terrain			
WP4	Complex terrain			
WP5	Modelling			
WP6	Emergency response			
WP7	Venting			

Low Medium High intensity work

Costs

• Summary of costs (approx. estimate, non-binding)

- DNV
- HSE
- University of Arkansas
- NCEC
- Met Office
- External advisors

Total cost, approximately £10m (\$12m)

- Department of Energy Security and Net Zero (UK Government) contribution: circa £5m (\$6m)
- Ideally, around ten sponsors: £0.5m (\$0.6m) per sponsor, spread over 3 years
- If you are interested in sponsoring Skylark, please contact: <u>Daniel.Allason@dnv.com</u>

Feedback

- Current plans have been developed following discussions at several meetings
 - 7 March 2023: ADMLC webinar "Dense-gas dispersion modelling in complex terrain, with a focus on carbon dioxide pipelines"
 - 8-11 May 2023: Presentation on "Knowledge gaps in the risk assessment of hydrogen and carbon dioxide pipelines", 18th Pipeline Technology Conference, Berlin, Germany
 - 20 22 June 2023: Presentation at George Mason University (GMU) Conference on Atmospheric Transport and Dispersion Modeling
 - 6 July 2023: UKCCSRC webinar on "Regulating UK CCS deployment: experience to date and research needs"
 - 31 August 2023: Presentation on the proposed Skylark trials at the CCSA Health and Safety Task Sub-Group meeting
 - 6 October 2023: Skylark project meeting at DNV Spadeadam and online
 - 31 Oct 1 Nov 2023: Presentation and participation in a panel discussion on CO₂ pipelines at the PHMSA Pipeline Safety Research and Development Forum, Arlington, Virginia, USA
 - 27 November 2023: CCSA Health and Safety Task Sub-Group meeting on CO₂ venting
- Keen to have wider engagement with CCS industry, regulators and other stakeholders
- Feedback welcome

Skylark project website

https://www.dnv.com/article/skylark-pioneering-excellence-in-co2-pipeline-safety-250648

Pioneering excellence to address crucial challenges related to the safe operation of CO2 pipelines.

share: in 🔰 f

Welcome to Skylark, a cutting-edge Joint Industry Project (JIP) that stands at the forefront of advancing safety standards in carbon dioxide (CO_2) pipeline operations. As a collaborative initiative led by DNV, in conjunction with the UK HSE Science Division (HSE SD) and esteemed partners, Skylark is dedicated to addressing intricate challenges posed by CO_2 pipelines. This project is instrumental in realizing the imperative outlined in DNV's Energy Transition Outlook 2022, emphasizing the need for substantial scaling up of carbon capture and storage (CCS) to rectify emissions overshoot by 2050.

Challenge: Unlocking the potential of carbon capture and storage

Skylark addresses the challenges posed by the significant scaling up of CCS to eliminate emissions accumulated before 2050. The focus is on understanding and mitigating risks associated with the transportation of CO2 from industrial sources to storage facilities through both onshore and offshore pipelines.

Daniel Allason

CONTACT US:

1 8

Principal Consultant

Send email

Join the JIP!

2024 API PIPELINE CONFERENCE AND EXPO – PIPELINE, CONTROL ROOM AND CYBERNETICS

Thank you

Contact: simon.gant@hse.gov.uk , daniel.allason@dnv.com

• The contents of this presentation, including any opinions and/or conclusions expressed, are those of the authors alone and do not necessarily reflect HSE policy

2024 API PIPELINE CONFERENCE AND EXPO

PIPELINE, CONTROL ROOM AND CYBERNETICS

Why the name Skylark?

Historical dispersion trials

- Avocet: LNG
- Burro: LNG
- Coyote: LNG
- Desert Tortoise: ammonia
- Eagle: nitrogen tetroxide
- Falcon: LNG
- Goldfish: hydrogen fluoride
- Kit fox: carbon dioxide
- Jack Rabbit: chlorine and ammonia
- Red Squirrel: ammonia
- Skylark: carbon dioxide

https://www.birdguides.com/gallery/birds/alauda-arvensis/1003602/

